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Background Case Study and Scenarios

Results

Conclusions

Faster RCNN

• An initial demand-driven deep learning-based framework for detection and recognition of occupancy activities and equipment usage
within a building space was developed.

• The proposed model has the ability to identify the occupancy and equipment usage with a relatively high accuracy (93.60% for
occupancy and 78.39% for equipment usage).

• Initial finding presented that up to 45.37% reduction in energy use for space cooling could be achieved.

• The ability of the deep learning detection to inform HVAC systems will significantly help towards reducing building energy loads,
monitor indoor ventilation and air quality and increase indoor thermal comfort.

Occupancy and Equipment Usage Profiles: Overall equipment detection and occupancy activity detection accuracy of 78.39% and 
93.60% were achieved. It resulted in up to 54.38% lower heat gains from PC monitors and up to 29.09% lower in occupancy heat gains.

Energy simulation
Building energy simulation was 
run to assess the impact of 
proposed approach on heating 
and cooling demand

Front

Back

Model of the case study building

As the major energy consumers in buildings, heating, ventilation and air-
conditioning (HVAC) systems consume about 40% of the total energy 
use. To enable demand-driven HVAC controls to provide a balance 
between energy reduction and comfort, a vision-based equipment 
detection approach was developed to accurately detect and predict 
internal heat emission from equipment in real-time in office buildings 
using the Faster RCNN model with InceptionV2.

Building Energy Simulation Results: During heating season, 
although the heating demands were higher when using deep 
learning profiles, the proposed approach can maintain the 
comfort level that occupants require.
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Building Energy Simulation Results: During cooling season, 
Scenario 4 estimated the lowest cooling load among all the 
scenarios and to be 45.37% lower than Scenario 1.  


