Living England: From satellite imagery to a nationalscale habitat probability map

Alex Kilcoyne, Miles Clement, Chris Moore, Amy Woodget, Max Fancourt, Anne Stefaniak, Becky Trippier & Sophie Potter earth.observation@naturalengland.org.uk

What is Living England?

- An up-to-date, national-scale map of predicted habitat distributions in England (Phase 4: 2021/22).
- Developed by a team with expertise in ecology & field surveying, Earth observation & data science.
- Created using openly-licenced satellite imagery, geospatial data & field-derived habitat data in a machine learning framework.
- Based on broad parcels of land known as 'segments' which sit within wider biogeographic zones (BGZs). Accuracy varies between different habitats & regional zones, with average habitat mapping accuracy reported at 88.39% in Phase 4.

How is the Living England habitat map created?

STEP 1. DATA ACQUISITION, LICENCING & FRAMEWORK

1a. Acquisition of raw geospatial data: Including satellite imagery, OS mapping & data on geology, soils, crops & climate.

1b. Acquisition of ground truth or label data: From

existing open-source habitat data, fieldwork and desktop surveys (Esri Field Maps app).

1c. Classification framework: Adapted UKBAP.

1d. Data licensing & permissions: For land access . & data.

STEP 6. RESULTS & ANALYSIS

6a. Merge vector-based & model-based classifications

6b. Assess model accuracy & confidence: overall measures & broken down by habitat class & BGZ.

6c. Assess model reliability: develop a bespoke reliability scoring system based on known quantitative data & feedback from partners.

STEP 7. OUTPUTS & DELIVERY

7a. Export Living England Habitat Map: Download Published under OGL in April '22.

> 7b. Publish report: Kilcoyne, A.M. et al., (2022) Living England: Technical User Guide. NERR108. Natural England.

7c. Engage with key partners: e.g., ELM, JNCC, EA, NatureScot. 7d. Other outputs: scripts on GitHub.

Change

Detection

Develop approach for

assessing broad habitat change every two years using

the Living England datasets

Identify key stakeholder and

end user requirements

What are the next steps?

Living England 2023-24

LE Data

回归之限

¥ ₩ ₩

Produce an updated Living England habitat map Ongoing internal and external field data collection Beta version to be released internally March '24. externally Sept '24

STEP 2. DATA INGESTION & PREPARATION

2a. Prepare geospatial data: Including Sentinel-1 coherence & backscatter processing & Sentinel-2 mosaicking and cloud/cloud-shadow masking

2b. Prepare ground truth data: Translate to UKBAP. QC. extract points within segments & statistical validation to remove outliers.

2c. Spatial zonation: Split data into 13 biogeographic zones.

STEP 5. MODEL-BASED CLASSIFICATION

5a. Compute zonal statistics: for geospatial data layers. by segment. Link ground truth data to zonal statistics for spatially concurrent segments.

5b. Model training & parameterisation: train individual random forest models for each BGZ. Select the most significant input variables and model parameters, alongside an iterative desktop validation process.

5c. Run models: to predict the top 'most likely habitat classes for all segments in all BGZs.

Living England Phase 4 (2021/22) **Published Habitat Map**

Primary Predicted Habitat

Acid, Calcareous, Neutral Grassland Arable and Horticultural Bare Ground Bare Sand Bog Bracker Broadleaved, Mixed and Yew Wo Built-up Areas and Gardens Coastal Saltmarsh Coastal Sand Dunes Coniferous Woodland Dwarf Shrub Heath Fen, Marsh and Swamp Improved Grassland Scrub Unclassified Wate

STEP 3. SEGMENTATION

3a. Run standardised segmentation: Uses Trimble eCognition v10.3

What can Living England be used for?

Environmental policy & decision making (e.g. Environmental Land

National habitat extent and connectivity assessments

Living England is intended to help inform:

Natural capital asset assessment Ecosystem service modelling

Plans for nature recovery

Management)

- software. Uses set parameters established through professional judgment to optimise segment size & shape.
- Standardised approach helps maintain consistency for subsequent change analyses.

Ecology

Earth Observation

. Data Science Living England

STEP 4. VECTOR-BASED CLASSIFICATION

4a. Create vector lavers:

- Arable & Horticulture: RPA's Crop Map of England. Coastal Saltmarsh: Bespoke mapping using S2 and
- LiDAR data alongside intertidal modelling. Water: OS Mastermap.
- Urban Areas: OS Mastermap.
- Bare Ground: bespoke mapping from Sentinel-1 coherence & Sentinel-2 NDVI
- 4b. Vector-based classification of above habitats: A hierarchical selection process based on known reliability of underlying datasets and proportion of overlap between vector layer and segment.

Average

modelled

accuracv

88.39%

Phase 4 known limitations:

- Undermapping of urban areas
- Overmapping of sand dunes
- Overmapping of fen, marsh & swamp in areas of bog & ACN grasslands (esp. in BGZ01)
- Confusion between grasslands
- Particularly low accuracy in BGZ03 Imbalance in ground truth data across BGZs & habitats

Recent developments:

- Method standardisation
- Addressing known limitations
- Developing an iterative process for modelling & QA Further developing the reliability
- metric Exploring new input data (e.g. LiDAR,
- OS Mastermap) Development of change detection workflows
- Commissioning new surveys & gathering data from latest monitoring

programmes

© Natural England

